Bounds for Weighted Empirical Distribution Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the r-weighted Gini mean difference of an empirical distribution

Various bounds for the r−weighted Gini mean difference of an empirical distribution are established.

متن کامل

Bounds for the Weighted Gini Mean Difference of an Empirical Distribution

In the paper, we obtain various bounds for more general weighted Gini mean difference of an empirical distribution, which extend the results of Cerone and Dragomir in [2].

متن کامل

Uniform Error Bounds for Reconstruct Functions from Weighted Bernstein Class

Errors appear when the Shannon sampling series is applied to reconstruct a signal in practice. This is because the sampled values may not be exact, or the sampling series may have to be truncated. In this paper, we study errors in truncated sampling series with localized sampling for band-limited functions from weighted Bernstein class. And we apply these results to some practical examples.

متن کامل

Bounds on Transverse Momentum Dependent Distribution Functions

Here, P and S denote the parent hadron momentum and spin, and the relevant component of the quark momentum is x = p/P, the light-cone momentum fraction. The components a = a · n∓ stem from vectors n+ and n−, satisfying n2+ = n 2 − = 0 and n+ ·n− = 1, which are fixed by the momentum that introduces the large scaleQ, together with a (soft) hadron momentum. When only the leading part in orders of ...

متن کامل

How Many Distribution Functions Are There? Bracketing Entropy Bounds for High Dimensional Distribution Functions

This means that every F ∈ Fd satisfies: (i) (non-negativity). For finite intervals I = (a1, b1] × · · · × (ad, bd] ≡ (a, b], with a, b ∈ Rd, F (I) = ∆dF (a, b] ≥ 0 where ∆d denotes the d−dimensional difference operator. (ii) (continuity from above). If y ↓ x, then F (y) ↓ F (x). (iii) (normalization). If x1∧. . .∧xd → −∞, then F (x) → 0; if x1∧. . .∧xd → +∞, then F (x) → 1. (See Billingsley [4]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1981

ISSN: 0091-1798

DOI: 10.1214/aop/1176994315